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Abstract

Understanding the sources of variability in an-
notations is crucial for developing fair NLP
systems, especially for tasks like sexism detec-
tion where demographic bias is a concern. This
study investigates the extent to which annotator
demographic features influence labeling deci-
sions compared to text content. Using a Gener-
alized Linear Mixed Model, we quantify this in-
fluence, finding that while statistically present,
demographic factors account for a minor frac-
tion ( 8%) of the observed variance, with tweet
content being the dominant factor. We then
assess the reliability of Generative AI (GenAI)
models as annotators, specifically evaluating if
guiding them with demographic personas im-
proves alignment with human judgments. Our
results indicate that simplistic persona prompt-
ing often fails to enhance, and sometimes de-
grades, performance compared to baseline mod-
els. Furthermore, explainable AI (XAI) tech-
niques reveal that model predictions rely heav-
ily on content-specific tokens related to sexism,
rather than correlates of demographic character-
istics. We argue that focusing on content-driven
explanations and robust annotation protocols
offers a more reliable path towards fairness than
potentially persona simulation.

1 Introduction

Reliable annotations are foundational to machine
learning in NLP, guiding models toward accurate
predictions. According to Uma et al. (2020), an-
notation involves humans labeling or transforming
data inputs into "gold data", which guides machine
learning practitioners in building their models. For
instance, to create a gold dataset for a model that
corrects grammatical errors, annotators might be
asked to identify mistakes in a range of sample sen-
tences. However, creating high-quality annotations

*These authors contributed equally to this work.
†Corresponding author: h.mohammadi@uu.nl

Figure 1: We instruct LLMs to replicate human annotations
for subjective NLP tasks from different perspectives using
persona prompting and XAI techniques. Our results show that
simulated personas alone may not sufficiently capture human
subjectivity. XAI analysis confirms that tweet content plays a
more significant role in model decisions.

is not a straightforward task since it requires
thoughtful consideration of the criteria that make
annotations effective, consistent, and unbiased.

This raises the following question, what defines
a robust annotation process? When it comes to
evaluating annotation quality, several studies high-
light Inter-Annotator Agreement (IAA), as defined
by Krippendorff (2011), as a standard metric for la-
beled datasets (Pei and Jurgens, 2023; Plank et al.,
2014). However, achieving high IAA is often chal-
lenging, particularly for subjective language tasks
that rely on human judgments. For tasks like sex-
ism detection, where subjectivity is inherent, ad-
dressing annotator agreement challenges is essen-
tial, as disagreements can significantly influence
the performance of NLP models trained on this
data. In some cases, disagreement often arises
from ambiguous sentences or vague label defini-
tions, which can make it difficult for annotators to
reach an agreement (Russell et al., 2008; Artstein
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and Poesio, 2008). Traditionally, aggregating judg-
ments from multiple annotators to create a single
"ground truth" for each data instance is widely used
to address the inherent ambiguity and subjectivity
in language interpretation. This approach is similar
to initial methods for handling annotator disagree-
ment, which focuses on estimating a "true" label.
However, Pavlick and Kwiatkowski (2019) shows
that even when annotators are provided with addi-
tional context, there is not always a single correct
answer, and disagreements still persist.

Recent studies indicate a significant shift in
how annotator disagreements are handled, partic-
ularly in subjective tasks involving human judg-
ments (Pavlick and Kwiatkowski, 2019; Basile
et al., 2021; Uma et al., 2021; Plank, 2022). Current
research primarily focuses on developing models
that can learn from these disagreements. While
NLP researchers aim for consistency among an-
notators, some level of disagreement is both in-
herent and unavoidable in human annotation pro-
cesses (Leonardelli et al., 2021). As Bless and
Fiedler (2014) showed, annotators’ demographic
factors, personal perspectives, and differing value
systems can lead to discrepancies in annotations.

Building on this foundation, researchers have
systematically analyzed how the characteristics
of annotators and the way tasks are framed can
skew evaluation outcomes. For instance, Hosking
et al. demonstrate that annotator assertiveness and
the linguistic complexity of model outputs signifi-
cantly bias judgments of factuality and consistency
in crowdsourced error annotations. Their study
finds that responses that sound more confident are
judged as more accurate, even if they contain the
same number of errors. Similarly, Kirk et al. (2024)
reveal that factors such as cultural background, age,
gender, and personal values lead to substantial vari-
ation in how responses are rated for helpfulness,
creativity, and alignment with individual beliefs.
These findings underscore the challenge of distin-
guishing true model performance from annotator-
induced biases and motivate the need for more scal-
able and consistent annotation methods under con-
trolled conditions.

This sparked researchers to explore the poten-
tial of GenAI models as substitutes for human an-
notators. Several studies have shown that large
language models (LLMs), when provided with de-
mographic information, can imitate specific anno-
tator groups by tailoring their outputs to reflect
attributes such as gender, race, age, or education

(Beck et al., 2024; Schäfer et al., 2024). How-
ever, LLMs often align more closely with certain
demographics (e.g., younger, White, male) unless
explicitly directed otherwise (Schäfer et al., 2024).
To the best of our knowledge, the incorporation of
XAI techniques to guide these models is still rare
(Ralevski et al., 2024; He et al., 2024; Freedman
et al., 2024). This creates critical gaps in evalu-
ating how demographic biases impact annotation
reliability and whether GenAI models, with XAI
guidance, can effectively substitute human annota-
tors, especially in subjective tasks such as sexism
detection. For instance, Mohammadi et al. (2024)
presents an explainability-enhanced sexism detec-
tion pipeline that bridges model predictions with
token-level explanations, illustrating efforts to im-
prove transparency in sexism detection.

In this study, we use data from the EXIST 2024
challenge (Plaza et al., 2024), a shared task on
sexism detection in social networks, a highly sub-
jective task.1 Our primary goal is to assess anno-
tation reliability and examine how demographic
biases influence annotator decisions. Using a Gen-
eralized Linear Mixed Model (GLMM), we ana-
lyze both fixed and random effects, revealing that
demographic variables account for nearly 8% of
the variance in labeling behavior, suggesting the
presence of demographic biases in human judg-
ments.We also evaluate LLM performance by sim-
ulating annotation and classification under various
prompting scenarios, model configurations, and
temperature settings. Our methodology compares
state-of-the-art models across open-source frame-
works and proprietary APIs, exploring how prompt
modifications affect outcomes. To improve explain-
ability, we employ SHAP values to reveal the in-
fluence of specific tokens on predictions across
demographic groups. By integrating SHAP analy-
ses into persona prompting, we examine how de-
mographic attributes shape predictions. Results
show that combining SHAP with persona prompt-
ing enhances both interpretability and reliability of
LLM-generated annotations.

Bias Statement This paper examines how demo-
graphic factors, such as gender, ethnicity, educa-
tion, and region, may influence both human and
LLM annotations in detecting sexist content on so-
cial media. We focus on potential representational
harms, wherein certain demographic groups’ view-
points or sensitivities to biased language might be

1
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underrepresented or misjudged. By highlighting
differences in labeling behaviors across diverse an-
notator backgrounds, we aim to reduce the risk that
an NLP system trained on these annotations will
inadvertently perpetuate stereotypes or unfairly dis-
count certain cultural experiences. We take the
normative stance that all groups deserve unbiased
and respectful treatment in both data collection and
model predictions. Our ultimate goal is to ensure
that technology, especially in sensitive tasks like
sexism detection, does not exacerbate inequalities
or reinforce harmful narratives.

2 Related Work

Recent studies have explored how annotators’ per-
sonal backgrounds, experiences, and identities in-
fluence labeling outcomes, particularly in subjec-
tive tasks (Pei and Jurgens, 2023). However, find-
ings in this area are mixed. Some studies report sig-
nificant correlations between demographic features
and annotation results (Excell and Al Moubayed,
2021), while others observe minimal statistically
significant differences, especially regarding gen-
der (Biester et al., 2022). These conflicting re-
sults highlight the complexity of the relationship
between annotator characteristics and labeling de-
cisions. Contrasts are particularly evident in tasks
such as identifying sexist content, offensive lan-
guage, and political ideologies, where an individ-
ual’s personal experiences and group affiliations
can significantly influence their perception and cat-
egorization of content (Kamruzzaman et al., 2024).
The diversity of findings underscores the need for
ongoing research to better understand the intricate
interplay between annotator attributes and labeling
outcomes. This understanding is crucial for devel-
oping more robust and inclusive NLP models that
can effectively incorporate diverse perspectives in
the annotation process. While some studies attempt
to enhance data quality by analyzing disagreements
among annotators, systematic investigations into
how annotators’ demographic biases affect annota-
tion results remain limited (Gupta et al., 2024).

2.1 Persona Prompting for LLMs Annotations

One promising approach to NLP annotation tasks
involves using GenAI Models, such as GPT-4,
which have been explored for automating anno-
tation tasks due to their advanced language un-
derstanding capabilities (Manikandan et al., 2023).
Furthermore, LLMs have shown potential in sim-

ulating diverse human perspectives by integrating
demographic features into prompts (Hu and Collier,
2024). This technique, known as "persona prompt-
ing", has been effectively utilized to model human
behavior and facilitate role-playing scenarios (Beck
et al., 2024). For instance Hu and Collier (2024)
examined how demographic, social, and behavioral
persona variables influence LLM predictions and
highlighted the importance of considering personal
attributes in subjective NLP tasks. The success
of LLMs in this domain has sparked discussions
about their potential to replace human subjects in
research contexts, particularly in annotation tasks
(Dillion et al., 2023; Grossmann et al., 2023).

However, this raises concerns about identity mis-
representation and the flattening of group nuances
(Wang et al., 2024). Moreover, persona prompting
is not without its challenges. LLMs may carry in-
herent biases from their training data, potentially
affecting annotation quality (Bender et al., 2021;
Pavlovic and Poesio, 2024). Recent studies high-
light these limitations, noting that LLMs often repli-
cate societal biases or fail to adequately capture the
nuances of minority perspectives (Hu et al., 2025;
Pavlovic and Poesio, 2024). These issues empha-
size the need for nuanced techniques to evaluate
and mitigate the extent to which LLMs can accu-
rately simulate human-like predictions.

2.2 LLMs Annotations’ Interpretability
XAI techniques, particularly SHAP (SHapley Ad-
ditive exPlanations), have become powerful tools
for improving model interpretability by attributing
importance to input features (Zhao et al., 2024).
In NLP, SHAP effectively identifies influential to-
kens driving classification decisions and uncovers
potential model biases (Ribeiro et al., 2016). Re-
cent advances have expanded XAI’s role in tasks
such as sentiment classification, bias detection,
toxic language identification, and inference (He
et al., 2024). He et al. (2024) introduced a two-
step framework using GPT-3.5, where the model
first generates explanations and then annotates data
through prompting. This approach has achieved
performance comparable to or exceeding human
annotators in tasks like Question Answering (QA)
and Word-in-Context (WiC), demonstrating the po-
tential of LLMs for annotation. Similarly, Ralevski
et al. (2024) applied GPT-3.5 and GPT-4 for anno-
tating housing instability using chain-of-thought
prompting. While LLMs are not yet suitable for
full automation due to challenges such as bias, they



show strong potential for computer-assisted annota-
tion, reducing the time and cost of manual efforts.

3 Experimental Setup
3.1 Dataset
We used data from the EXIST 2024 chal-
lenge (Plaza et al., 2024), which comprises datasets
sourced from Twitter (now X). The labeled dataset
contains tweets in both English and Spanish, with
the training set comprising 6920 tweets in both lan-
guages (3260 in English, and 3660 in Spanish). For
simplicity, we focus exclusively on Task 1 which
involves binary classification of tweets to deter-
mine whether they express content related to sex-
ism. Each tweet in the dataset was annotated by
six individuals, who also provided demographic
information across five categories: gender, age, eth-
nicity, education, and country. Specifically, gender
was recorded as male or female; age was grouped
into three categories (18–22, 23–45, and 46+); eth-
nicity included Asian, Black, White, Latino, Mid-
dle Eastern, Multiracial, and Other; education lev-
els ranged from less than high school to doctorate;
and annotators came from 45 countries. To simplify
the analysis, these countries were categorized into
five regions: Europe, America, Africa, Asia, and
the Middle East. This grouping reduced the total
number of unique demographic combinations from
266 to 117. We then eliminated combinations with
rare representations, which we explain in detail in
the next section.

3.2 Generalized Linear Mixed Model
We ran a GLMM to examine how annotators’ de-
mographic features affect labeling decisions. The
model accounts for clustering of labels within
tweets by incorporating random effects, ensuring
that demographic influences are estimated indepen-
dently of tweet-specific characteristics and individ-
ual differences. In our dataset, tweets and annota-
tors serve as grouping variables, forming a crossed
random effects structure: each tweet is labeled by
multiple annotators, and each annotator labels mul-
tiple tweets. Also, tweets are hierarchically nested
within languages. To account for both crossed and
nested random effects, the following mixed-effects
logistic regression model is specified.2

E(labelij | b) = logit−1(Xijβ + Zijb)

2In R notation, labelij ∼ Annotators’ demographic factors +

(1 | lang/id_EXIST) + (1 | annotator_id)

In the model, labelij is the binary response vari-
able indicating whether the label for the i-th tweet
by the j-th annotator is YES or NO. The design ma-
trix Xij includes fixed effects for annotator demo-
graphic features, with β representing their corre-
sponding coefficients. Random effects are modeled
as Zijb, capturing variation among tweets nested
within languages and annotators. The random ef-
fects vector b follows a multivariate normal distri-
bution ∼ N(0,G). A logistic inverse link function,
logit−1(·), is used to model the binary outcome.
This model evaluates demographic biases while
accounting for tweet-level variability and annota-
tor differences. Following prior studies (Pei and
Jurgens, 2023), we excluded rare demographic fea-
tures (i.e., representing less than 2% of annotators),
such as the “Middle Eastern” ethnicity with only
three annotators. Consequently, 69 out of 725 an-
notators were removed. We also excluded unique
demographic combinations represented by only one
annotator unless present in both languages. This
resulted in 56 unique demographic combinations,
detailed in Appendix A, Table 3.To address demo-
graphic and label-class imbalances, we assigned
weights to each observation based on the inverse
frequency of its demographic attributes and label
class. The raw weight (Wraw) for each observation
was calculated as:

Wraw =
∏

features
1

fgroup
× 1

flabel

Here, fgroup denotes the relative frequency of a
demographic category, and flabel the label class
frequency. This approach, commonly used in
survey weighting to address sample imbalances
(Groves et al., 2011). For computational stabil-
ity, raw weights were normalized to [0, 1] using
Wnorm = Wraw

max(Wraw)
and then scaled for use in the

mixed-effects model. As shown in Appendix C,
Figure 5, the top ten demographic combinations
with the highest weight contributions are identified
across both YES and NO labels. For instance, fe-
male annotators aged 23–45, identifying as Black,
holding a bachelor’s degree, and residing in Africa,
provide the most balanced weighted input.

3.3 BERT Model and SHAP Values

To classify texts as sexist or non-sexist, we use the
Bidirectional Encoder Representations from Trans-
formers (BERT) multilingual model. BERT cap-
tures word context by considering both left and
right surroundings in a sentence (Devlin et al.,
2019). The multilingual version is particularly



suited to our dataset, which contains texts in two
languages. During training, we fine-tune the BERT
multilingual model using standard procedures. We
use the Adam optimizer with a learning rate of
3×10−5 and a batch size of 128. The maximum se-
quence length is set to 512 tokens to handle longer
texts. Binary cross-entropy is used as the loss func-
tion for this binary classification task. The model
is trained for up to 10 epochs, with early stop-
ping based on validation loss to prevent overfitting
and ensure good generalization (Brownlee, 2018).
To incorporate explainability into our methodol-
ogy, we use SHAP values, following the approach
by (Mohammadi et al., 2024). SHAP values quan-
tify each token’s contribution to the model’s pre-
diction, highlighting the most influential parts of
the text. The SHAP value for each token t, St, is
computed by measuring the change in the model’s
output when the token is included versus omitted
across all possible subsets of input tokens. The
SHAP value St for token t is computed as:

St =
∑

T ′⊆T\{t}
|T ′|!(|T |−|T ′|−1)!

|T |!
[
f(T ′ ∪ {t}) − f(T ′)

]
Where T is the set of all tokens in the input text,

T ′ is a subset of T excluding token t, and f(·) rep-
resents the model’s prediction function. To find
the most influential tokens, we calculate the SHAP
importance SIt for each token t by averaging the ab-
solute SHAP values across all instances Nt where
the token appears, considering only the cases where
the model’s prediction matches the true label:

SIt = 1
Nt

∑Nt
i=1 |St(i)| · I (yi = ŷi)

Here, St(i) is the SHAP value of token t in in-
stance i, yi is the true label, ŷi is the predicted
label, and I(·) is the indicator function. After
that, we normalize the SHAP importance scores
to compute the importance ratio for each token:
IRt = SIt∑

k∈T SIk
. Tokens are ranked by importance

ratios, and cumulative importance is calculated as
CIk =

∑k
i=1 IRi to select the most influential to-

kens such that CIk ≤ Tc. We set the threshold
Tc = 0.95 to retain tokens contributing to 95% of
the total importance. These top tokens are iden-
tified per class and incorporated into the GenAI
prompts by bolding them, guiding the generative
model to focus on critical parts of the text. In-
tegrating SHAP enhances classifier transparency,
revealing key factors driving decisions. Crucially,
analyzing high-importance tokens helps determine
whether the model relies on meaningful indicators
of sexism or spurious correlations. These tokens
are then used in GenXAI and GenPXAI scenar-

ios, which will be described in more detail in the
section 3.5, to guide LLMs, allowing us to assess
whether highlighting content-relevant features im-
proves annotation reliability.

3.4 Large Language Models

We experiment with a range of LLMs, including
local open-source models and cloud-based propri-
etary APIs, including OpenAI-based models (GPT-
4o and GPT-4o mini)3 and LLaMA-based mod-
els (LLaMA 3.2 3B and LLaMA 3.3 70B).4 We
evaluate how factors such as model size and archi-
tecture (e.g., OpenAI vs LLaMA variants) influ-
ence sexism detection across different scenarios
and prompts.

3.5 GenAI Scenarios

We evaluate four main scenarios, each designed
to probe the effect of additional context or high-
lighting on the model’s responses. These scenarios,
inspired by a previous study (Kamruzzaman et al.,
2024). The first scenario, GenAI, involves using
a generative model to classify texts without addi-
tional context or guidance. The prompt instructs
the model to make a straightforward classification
based solely on the input text. In the second sce-
nario, Persona-Driven GenAI (GenP), a persona
is added to the prompt to assess its impact on model
performance. The persona provides specific de-
mographic characteristics the model should adopt,
aiming to influence its perspective and potentially
enhance sensitivity to sexist content. The third
scenario, Explainable GenAI (GenXAI), incorpo-
rates SHAP values to highlight influential parts of
the text using bold formatting, guiding the model’s
attention to key sections. This tests whether fo-
cusing on important tokens improves classification
accuracy. In the fourth scenario, Persona-Driven
Explainable GenAI (GenPXAI), we combine per-
sona guidance with SHAP-based highlighting to
assess the joint effect of perspective adoption and
attention emphasis on model performance.

3.6 Personas

Personas are constructed based on demographic
attributes such as gender, age, ethnicity, education,
and region, corresponding to the 56 unique demo-
graphic combinations listed in Appendix A, Table 3.
They shape the perspective from which the model

3
https://openai.com/index/hello-gpt-4o/ & https://openai.

com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
4
https://huggingface.co/meta-llama/Llama-3.2-3B & https://

huggingface.co/meta-llama/Llama-3.3-70B-Instruct

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct


evaluates text, potentially reflecting cultural, lin-
guistic nuance or demographic sensitivities.

• English: "You are a {gender} individual,
aged {age}, who identifies as {ethnicity},
has a {study_level}, and currently resides
in {region}. You have the cultural and
personal background of someone with these
demographics."

• Spanish: "Eres una persona {gender}, de {age}
años, que se identifica como {ethnicity},
posee un nivel de estudios {study_level}, y
actualmente reside en {region}. Tienes el
trasfondo cultural y personal de alguien con
estas características demográficas."

3.7 Important Tokens

For scenarios involving GenXAI and GenPXAI,
we rely on previously computed important tokens
from SHAP values. We highlight the top tokens
by wrapping them in bold formatting (**token**)
to draw the model’s attention. This approach aims
to help the model focus on terms that are most
indicative of sexism.

3.8 Majority Voting

Majority voting is used to assign hard labels, while
probabilities are used for soft labels. This provides
a robust benchmark for evaluating automated meth-
ods. To simulate multiple annotators, the model
generates six responses per text under each sce-
nario and temperature setting. These six outputs
represent "virtual annotators," and majority voting
is applied to produce a single prediction per text.
This simulates inter-annotator variability and of-
fers a more robust estimate of the model’s stance,
similar to human annotation aggregation.

4 Results and Discussion

Do demographic biases mainly drive labeling
differences, or does tweet content play a larger
role? To investigate this question, we first fit a
flat logistic regression model with annotator de-
mographic features as fixed effects. This provides
a baseline assessment of demographic influence
without accounting for tweet-specific or annotator-
level variability. We then extend the analysis using
a mixed-effects logistic regression model, incorpo-
rating crossed random intercepts for annotators and
nested random effects for tweets within languages.
This approach captures both annotator variability
and tweet-specific differences while retaining de-
mographic features as fixed effects.

Our findings show that incorporating tweet-level
and annotator-level variability in the mixed-effects

model substantially improves performance over the
flat model. The mixed model achieves higher accu-
racy (73.73% vs 48.76%) and F1 score (75.77% vs
45.09%), along with better fit indicated by lower
AIC and BIC values and a higher AUC. A kappa
value of (47.06%) and an intraclass correlation co-
efficient (ICC) of 92.3% highlight the importance
of accounting for tweet-specific differences, which
the flat model ignores. Notably, the random effect
for tweets shows high variance (33.72), indicating
that tweet content is the main source of labeling
variability. The annotator random effect (5.54) also
contributes meaningfully, while the language ef-
fect (0.30) has minimal influence. These findings
confirm the mixed-effects model as a more accu-
rate and nuanced approach for understanding the
labeling process.

Table 1: Comparison of Flat Model and Mixed-Effects Model
Coefficients. Significant codes: ‘***’very strong(p < 0.001),
‘**’strong(0.001 ≤ p < 0.01), ‘*’moderate(0.01 ≤ p <
0.05), ‘.’weak(0.05 ≤ p < 0.1), ‘-’very weak(0.1 ≤ p < 1).

Variable Coef_Flat P_Flat > |z| Coef_Mixed P_Mixed > |z|

(Intercept)1 0.274 *** -0.328 -
Female 0.020 *** 0.055 -
23-45 0.206 *** 0.027 -
46+ -0.089 *** 0.111 -
Black 0.214 *** 1.704 .
Latino -0.237 *** -0.770 *
High school -0.255 *** -0.465 *
Master -0.506 *** 0.048 -
Africa -0.732 *** -2.865 **
America 0.178 *** 0.370 -

1 The reference group is male annotators aged 18–22 from Europe who hold a
bachelor’s degree and identify as white.

Table 1 compares the coefficients of the flat
logistic regression and mixed-effects models for
each demographic feature. The flat model assumes
independence among observations, ignoring the
dataset’s hierarchical structure. As a result, it at-
tributes all variability to fixed effects and residual
error, potentially leading to biased coefficient es-
timates. For example, the flat model suggests fe-
males are slightly more likely to label YES than
males, but it fails to account for content-specific
variability, leading to a misleading interpretation.
In contrast, the mixed-effects model incorporates
random effects for tweet-level and language-level
variability, showing that gender does not signifi-
cantly influence labeling. This aligns with Biester
et al. (2022), who found no significant gender-
based differences in annotation behavior across
various NLP tasks. Based on these findings, we use
the mixed-effects model for further analysis, as it
offers a more robust and accurate framework for
interpreting demographic impacts.



4.1 Random Effects Interpretation
The odds ratio (OR)5 for English tweets (OR =
0.84) indicates they are less likely to be labeled
as sexist compared to Spanish tweets (OR = 1.95).
Among the 347 annotators labeling Spanish tweets,
223 (64.27%) are from Spanish-speaking countries,
while only 73 out of 302 (24.17%) annotators la-
beling English tweets are from English-speaking
countries. Although we assume annotators are flu-
ent in the language they label, regional residency
may influence familiarity with cultural nuances
and idiomatic expressions, affecting labeling de-
cisions. Additionally, the grammatical structure of
Spanish—being a gendered language—may make
gender biases more explicit than in English. This
aligns with Lomotey (2015), who emphasize the
impact of grammatical gendering in Spanish. Thus,
the observed differences in labeling may reflect
both linguistic and cultural factors. Also, prior
studies have found that classifiers achieve higher
sexism-detection performance in English than in
Spanish, likely due to the greater abundance of
English-language training resources (Fivez et al.,
2024).

4.2 Fixed Effects Interpretation
While the OR for females is slightly above 1, sug-
gesting women may be more attuned to gender bias,
gender does not significantly influence labeling de-
cisions. Male and female annotators exhibit similar
behavior, supported by a 74% agreement in major-
ity labeling, indicating consistency across genders.
Similarly, although older annotators show slightly
higher ORs, suggesting greater sensitivity to sex-
ist content, no significant differences are observed
across age groups, indicating age is not a decisive
factor in labeling behavior. In contrast, ethnicity
significantly affects labeling. Black annotators are
more likely to label tweets as sexist (OR = 5.50),
while Latino annotators are less likely compared to
White annotators (OR = 0.46). These findings align
with Tahaei and Bergler (2024) and Kwarteng et al.
(2023), which highlight the heightened sensitivity
of Black annotators, particularly Black women, due
to lived experiences with intersectional discrimina-
tion. The lower likelihood among Latino annota-
tors may reflect cultural norms. Regarding educa-
tion, no significant differences are found between
annotators with bachelor’s and master’s degrees.

5The odds ratio (OR = eβ) refers to how the odds of
the outcome (label = yes) change when a predictor variable
changes, while all other variables are held constant.

However, those with only a high school degree are
significantly less likely to label tweets as sexist
(OR = 0.63). Geographical location also plays a
key role. Annotators from Africa are much less
likely to label tweets as sexist (OR = 0.06), sup-
porting findings from Tahaei and Bergler (2024)
that emphasize the influence of country of origin
and linguistic background on annotation behavior.

Our analysis shows that tweet-specific charac-
teristics have a substantial impact on annotation
outcomes, outweighing the influence of annotator
demographics. While demographic features such
as ethnicity, region, and education exhibit some
significant associations with labeling tendencies,
our mixed-effects model indicates that these ef-
fects are secondary to the inherent properties of
the tweets. With an intraclass correlation coeffi-
cient (ICC) of 92%, the majority of the variance in
labeling outcomes is attributed to tweet-level vari-
ability, with language contributing only a minor ad-
ditional source of variation. The remaining 8% of
the variance is explained by demographic variables
and residual error. These findings suggest that, al-
though demographic biases are not the dominant
source of variability, they still play a meaningful
role and should not be overlooked.

4.3 BERT Model Interpretation

We employed a multilingual BERT model for bi-
nary sexism classification, fine-tuning it on 90%
of the dataset using class weights and early stop-
ping. Evaluated on the remaining 10% (ensuring
representation of all demographic combinations),
the model achieved test accuracies of 77% in En-
glish and 79% in Spanish, demonstrating consistent
cross-lingual performance. To interpret the model’s
decisions, particularly for classifying tweets as sex-
ist (YES), we utilized SHAP values. Calculating
normalized mean SHAP importance for tokens in
correctly classified YES instances revealed insights
into feature attribution.

As shown in Figure 2, while a relatively small
number of tokens capture roughly 50% of the cumu-
lative importance, explaining near-total importance
(e.g., 95%) necessitates considering a significantly
larger lexicon, a trend particularly pronounced in
Spanish. This suggests reliance on both core in-
dicators and a broader range of terms for compre-
hensive detection. Examining the most influential
tokens provides further clarity.
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Figure 2: Threshold vs. Number of Selected Tokens in both
English and Spanish.

Figure 3 displays the top 20 tokens by SHAP
importance. In English, terms like slut, women,
girls, and wife dominate, highlighting the
model’s focus on overtly gendered and potentially
insulting language. Similarly, in Spanish, tokens
such as masculino, mujeres, feminist, mujer,
mach, and sexual are highly ranked, indicating
a strong reliance on explicit gendered terms and
references to sexual characteristics or ideologies.

(a) English Tokens

(b) Spanish Tokens

Figure 3: Top 20 tokens by SHAP importance in (a) English
and (b) Spanish.

This analysis confirms that both language mod-
els heavily weigh content features directly related
to sexism. While the specific influential tokens
differ due to linguistic variations, the underlying
mechanism points towards content-based classifi-
cation. The distribution of influence also varies
slightly, with the top 50 tokens accounting for 40%

of importance in English versus 45% in Spanish
(Appendix D, E), suggesting a slightly more con-
centrated reliance on key terms in Spanish.6

4.4 GenAI Scenarios Results
We evaluate our approach on a 10% random sam-
ple of the dataset, comprising 326 English texts
and 366 Spanish texts, covering all demographic
groups. We measure performance using accuracy
and F1-score. Table 2 presents the performance
metrics for all GenAI scenarios across four models,
LLaMA 3.2 3B, LLaMA 3.3 70B, OpenAI GPT-
4o, and OpenAI GPT 4o-mini, in both English and
Spanish.

Table 2: Performance metrics for all scenarios (see section
3.5). Numbers represent the scenarios: 1.GenAI, 2.GenP,
3.GenXAI, and 4.GenPXAI.

Accuracy English Spanish
1 2 3 4 1 2 3 4

LM 3B 0.50 0.47 0.59 0.53 0.43 0.43 0.48 0.50
LM 70B 0.66 0.64 0.65 0.64 0.64 0.58 0.57 0.58
GPT-4o 0.76 0.75 0.73 0.78 0.75 0.77 0.72 0.77
4o-mini 0.79 0.78 0.77 0.79 0.81 0.80 0.82 0.79

F1-score

LM 3B 0.51 0.47 0.53 0.53 0.43 0.43 0.45 0.47
LM 70B 0.66 0.60 0.62 0.58 0.62 0.51 0.49 0.47
GPT-4o 0.74 0.74 0.71 0.77 0.74 0.76 0.70 0.76
4o-mini 0.78 0.78 0.77 0.79 0.81 0.80 0.82 0.79

Overall, OpenAI GPT 4o-mini and GPT-4o per-
form better, while LLaMA 3.2 3B tends to perform
worse, and LLaMA 3.3 70B is in between. The En-
glish subset often shows a baseline advantage for
the more capable models, while the Spanish subset
sometimes benefits more from certain prompting
strategies. Differences across scenarios help reveal
the impact of introducing personas and focusing
attention on important tokens (XAI). Critically, as-
sessing the utility of demographic personas (Sce-
nario 2, GenP), we observe that it often provides no
significant improvement over the baseline GenAI
(Scenario 1) and occasionally leads to worse per-
formance (e.g., LLaMA 3B and 70B models show
decreased accuracy or F1-score in English, and
LLaMA 70B sees a notable drop in F1-score in
Spanish when personas are added). Even for the
higher-performing GPT models, the gains from per-
sona prompting alone are minimal or absent (e.g.,
GPT-4o mini accuracy slightly decreases in both
languages). This suggests that simply layering de-
mographic characteristics onto the prompt does not
reliably enhance the LLM’s ability to replicate nu-
anced human judgments for this task, questioning

6An exploratory analysis of unique token diversity across
annotator demographic groups, detailed in Appendix B.



the value of such personas for improving annota-
tion reliability.

Focusing on XAI (Scenario 3, GenXAI), high-
lighting important tokens identified by SHAP often
helps smaller models (e.g., LLaMA 3.2 3B shows
a marked improvement in accuracy in English go-
ing from 0.50 to 0.59, and in Spanish from 0.43 to
0.48) and provides a solid baseline, suggesting ben-
efit from focusing the model on content features
deemed important by an explainability analysis.
For larger models, the effect of XAI alone is mixed,
sometimes resulting in slight performance dips
compared to the baseline (e.g., GPT-4o). For larger
models, the combined approach (Scenario 4, Gen-
PXAI) sometimes yields the highest scores (e.g.,
GPT-4o achieves its peak accuracy and F1 in both
languages, and 4o-mini peaks in English). How-
ever, the improvement of GenPXAI over GenXAI
is often marginal or inconsistent. For instance,
with GPT-4o mini in Spanish, the GenXAI scenario
(0.82 Acc, 0.82 F1) actually slightly outperforms
the combined GenPXAI scenario (0.79 Acc, 0.79
F1). This pattern raises questions about whether
the persona component in GenPXAI adds substan-
tial value beyond the guidance provided by the
content-focused XAI highlighting. The data sug-
gests that directing the model’s attention to rel-
evant textual features (XAI) might be the more
robust and impactful strategy, rather than attempt-
ing to simulate demographic perspectives through
personas, whose contribution appears less certain.
In summary, these results indicate that while base-
line GenAI models already achieve strong perfor-
mance on this task, the addition of demographic
persona information offers questionable and incon-
sistent benefits for improving annotation reliability
in this context. Guiding the model’s attention us-
ing XAI based on content features appears more
consistently helpful, particularly when paired with
capable models, suggesting that focusing on the
text itself through explainability methods is a more
promising path forward than relying on potentially
superficial persona simulation.

5 Conclusion

This study evaluated the reliability of LLM annota-
tions for sexism detection, focusing on the roles of
annotator demographics and model explainability.
Mixed-effects modeling showed that demographic
factors, while sometimes statistically significant,
accounted for only 8% of the variance in human la-

bels, tweet content and individual differences were
the main drivers. We tested the use of demographic
personas to guide LLMs but found this strategy
had limited, inconsistent, and sometimes negative
effects on performance. SHAP analysis confirmed
that content drove model decisions. These find-
ings suggest that bias mitigation should focus less
on broad demographic corrections and more on
content and individual-level understanding. Simu-
lated personas may oversimplify complexity and
risk reinforcing stereotypes. This limitation is un-
derscored by evidence that LLM often exhibits uni-
form stylistic patterns (Mohammadi et al., 2025),
showing that current models cannot fully emulate
the diverse differences of human annotators. In-
stead, explainability tools that highlight content-
relevant features offer a more promising path to-
ward fairness and reliability in NLP.Future research
should explore richer ways to capture diverse per-
spectives and improve content-based guidance in
LLM annotations.

6 Limitations and Future Work

Although our analysis suggests that demographic
factors account for only a fraction of the variability
in the labeling, our findings may not generalise to
other languages or cultural contexts. Future work
should examine a wider range of datasets and lin-
guistic settings to better assess the robustness and
cross-cultural applicability of our approach.Our
persona-driven prompts and explainability tech-
niques rely on relatively broad demographic cate-
gories, which cannot capture the full richness of
individual identities or personal experiences. Addi-
tionally, LLMs can exhibit hidden biases derived-
from their training data, and our prompts may no-
talways surface or mitigate these biases.
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All codes and experiment notebooks are available
on GitHub.7
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A Annotators’ demographic combination

The total number of unique demographic combi-
nations after removing those with rare representa-
tions.

Table 3: Unique Demographic Combinations

# Possible Combination # of es
Ann

# of en
Ann

1 F, 18-22, Black, Bachelor, Africa 0 4
2 F, 18-22, Black, High school, Africa 0 3
3 F, 18-22, Latino, Bachelor, America 19 1
4 F, 18-22, Latino, High school, America 15 4
5 F, 18-22, Latino, High school, Europe 1 1
6 F, 18-22, White, Bachelor, America 2 0
7 F, 18-22, White, Bachelor, Europe 15 18
8 F, 18-22, White, High school, Europe 7 25
9 F, 23-45, Black, Bachelor, Africa 0 9
10 F, 23-45, Black, High school, Africa 0 2
11 F, 23-45, Latino, Bachelor, America 34 0
12 F, 23-45, Latino, High school, America 6 0
13 F, 23-45, Latino, Master, America 2 0
14 F, 23-45, White, Bachelor, America 1 1
15 F, 23-45, White, Bachelor, Europe 7 20
16 F, 23-45, White, High school, Europe 1 3
17 F, 23-45, White, Master, Europe 9 14
18 F, 46+, Black, Bachelor, Africa 0 4
19 F, 46+, Latino, Bachelor, America 12 0
20 F, 46+, Latino, Bachelor, Europe 3 0
21 F, 46+, Latino, High school, America 2 1
22 F, 46+, Latino, Master, America 6 1
23 F, 46+, White, Bachelor, America 3 2
24 F, 46+, White, Bachelor, Europe 11 9
25 F, 46+, White, High school, Africa 0 3
26 F, 46+, White, High school, America 2 2
27 F, 46+, White, High school, Europe 4 16
28 F, 46+, White, Master, America 2 0
29 F, 46+, White, Master, Europe 7 6
30 M, 18-22, Black, Bachelor, Africa 0 2
31 M, 18-22, Black, High school, Africa 0 2
32 M, 18-22, Latino, Bachelor, America 10 2
33 M, 18-22, Latino, Bachelor, Europe 1 2
34 M, 18-22, Latino, High school, America 17 7
35 M, 18-22, Latino, High school, Europe 3 2
36 M, 18-22, Latino, Master, Europe 2 0
37 M, 18-22, White, Bachelor, Europe 17 11
38 M, 18-22, White, High school, Europe 11 25
39 M, 18-22, White, Master, Europe 0 3
40 M, 23-45, Black, Bachelor, Africa 0 7
41 M, 23-45, Black, Master, Africa 0 2
42 M, 23-45, Latino, Bachelor, America 8 5
43 M, 23-45, Latino, Bachelor, Europe 1 2
44 M, 23-45, Latino, Master, America 2 0
45 M, 23-45, Latino, Master, Europe 2 0
46 M, 23-45, White, Bachelor, Europe 24 10
47 M, 23-45, White, High school, Europe 4 10
48 M, 23-45, White, Master, Europe 18 15
49 M, 46+, Latino, Bachelor, America 8 3
50 M, 46+, Latino, Master, America 2 0
51 M, 46+, White, Bachelor, Africa 0 2
52 M, 46+, White, Bachelor, America 5 5
53 M, 46+, White, Bachelor, Europe 21 14
54 M, 46+, White, High school, America 0 2
55 M, 46+, White, High school, Europe 12 15
56 M, 46+, White, Master, Europe 8 5

B Unique Token Analysis by
Demographic Group

To further explore potential secondary demo-
graphic influences, we analyzed the distribution
of unique token counts within tweets annotated by
different demographic groups. This exploratory
analysis aimed to identify potential variations in
linguistic engagement or lexical diversity associ-

ated with annotator characteristics. As shown in
Figure 4, we observed some variation across cate-
gories in both English and Spanish. For instance,
certain groups exhibited broader ranges of unique
tokens, potentially hinting at subtle cultural or lin-
guistic factors influencing how they engage with
the text. However, consistent with our primary find-
ings, these observed differences appear secondary
to the overwhelming influence of the tweet content
itself on the annotation process and model interpre-
tation.

(a) English Tokens

(b) Spanish Tokens

Figure 4: Distribution of unique tokens per tweet across
various annotator demographic categories in (a) English and
(b) Spanish. This exploratory analysis hints at subtle variations
but confirms the secondary nature of these effects compared
to content.

C Top ten demographic combination

Figure 5: Different demographic combinations that have the
highest weight contributions across both label classes



D Complete Lists of Important Tokens

Here are the tokens identified by the model that
contribute to classifying tweets as sexist, along
with their importance scores.

Table 4: 50 Top important English Tokens

Token SHAP Ratio Cum. Token SHAP Ratio Cum.

slut 0.4041 0.0246 0.0246 feminist 0.1017 0.0062 0.2818
women 0.3928 0.0239 0.0485 periods 0.0991 0.0060 0.2878
girls 0.3561 0.0217 0.0702 pro 0.0974 0.0059 0.2938
fem 0.3324 0.0202 0.0905 her 0.0972 0.0059 0.2997
Wife 0.2896 0.0176 0.1082 ok 0.0935 0.0057 0.3054
scholar 0.2858 0.0174 0.1256 She 0.0924 0.0056 0.3110
woman 0.2807 0.0171 0.1427 boys 0.0896 0.0054 0.3165
onde 0.2559 0.0156 0.1583 ti 0.0871 0.0053 0.3218
ches 0.2278 0.0138 0.1722 Like 0.0853 0.0052 0.3270
teaching 0.2264 0.0138 0.1860 mbo 0.0837 0.0051 0.3321
stitute 0.1735 0.0105 0.1966 ips 0.0836 0.0051 0.3372
pregnant 0.1682 0.0102 0.2068 ts 0.0820 0.0050 0.3422
gang 0.1624 0.0099 0.2167 coverage 0.0808 0.0049 0.3472
men 0.1430 0.0087 0.2255 really 0.0806 0.0049 0.3521
biggest 0.1382 0.0084 0.2339 wife 0.0776 0.0047 0.3568
bl 0.1249 0.0076 0.2415 dies 0.0773 0.0047 0.3615
girl 0.1182 0.0072 0.2487 finger 0.0768 0.0046 0.3662
Women 0.1156 0.0070 0.2558 trophy 0.0759 0.0046 0.3708
bit 0.1155 0.0070 0.2628 dressed 0.0747 0.0045 0.3754
pen 0.1073 0.0065 0.2694 ina 0.0742 0.0045 0.3799
financial 0.1021 0.0062 0.2756 Why 0.0739 0.0045 0.3844
female 0.0734 0.0044 0.3889 comment 0.0733 0.0044 0.3934
dress 0.0702 0.0042 0.3977 sex 0.0672 0.0041 0.4017
male 0.0669 0.0040 0.4058 husband 0.0668 0.0040 0.4099
ehan 0.0654 0.0039 0.4139 ouse 0.0649 0.0039 0.4179

Table 5: 50 Top important Spanish Tokens

Token SHAP Ratio Cum. Token SHAP Ratio Cum.

apa 0.1573 0.0063 0.3787 feminist 0.3258 0.0132 0.1557
ones 0.1489 0.0060 0.3848 mujer 0.3184 0.0129 0.1686
ios 0.1478 0.0059 0.3907 lab 0.3151 0.0127 0.1814
var 0.1476 0.0059 0.3967 vas 0.3123 0.0126 0.1941
novia 0.1416 0.0057 0.4025 hombre 0.3026 0.0122 0.2063
bian 0.1415 0.0057 0.4082 mach 0.2965 0.0120 0.2184
golf 0.1414 0.0057 0.4140 dama 0.2881 0.0116 0.2301
male 0.1393 0.0056 0.4196 tú 0.2822 0.0114 0.2415
marido 0.1384 0.0056 0.4252 bia 0.2508 0.0101 0.2517
tant 0.1289 0.0052 0.4305 Od 0.2485 0.0100 0.2618
laga 0.1269 0.0051 0.4356 sexual 0.2453 0.0099 0.2717
ñas 0.1242 0.0050 0.4406 fem 0.2309 0.0093 0.2811
ellas 0.1235 0.0050 0.4457 femenino 0.2263 0.0091 0.2903
amo 0.1227 0.0049 0.4506 doctor 0.2237 0.0090 0.2993
aca 0.1179 0.0047 0.4554 princesa 0.2231 0.0090 0.3084
loc 0.1080 0.0043 0.4598 nen 0.2200 0.0089 0.3173
ball 0.1023 0.0041 0.4640 masculin 0.2189 0.0088 0.3262
nar 0.5781 0.0234 0.0234 Mujeres 0.2137 0.0086 0.3349
masculino 0.4012 0.0162 0.0397 niña 0.2028 0.0082 0.3431
prend 0.3953 0.0160 0.0557 bella 0.1890 0.0076 0.3508
mach 0.3804 0.0154 0.0712 ton 0.1839 0.0074 0.3582
zo 0.3665 0.0148 0.0860 niños 0.1807 0.0073 0.3656
mujeres 0.3642 0.0147 0.1008 ment 0.1670 0.0067 0.3723
mans 0.3615 0.0146 0.1155 novi 0.3394 0.0137 0.1292
señor 0.3266 0.0132 0.1425 sÃ 0.1003 0.0040 0.4680

E Cumulative importance of the top 50
tokens
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Figure 6: The cumulative importance of the top 50 tokens in
both English and Spanish.
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Figure 7: Comapring TPR and FNR across models, scenarios,
and languages.
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